Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38563586

RESUMO

INTRODUCTION: Research assuming linearity has concluded that corneal biomechanics are compromised in high myopia. We investigated whether this assumption was appropriate and re-examined these associations across different levels of myopia. METHODS: Myopic (spherical equivalent refraction, SER ≤ -0.50 D) eyes of 10,488 adults aged 40-69 years without any history of systemic and ocular conditions were identified in the UK Biobank. Ordinary least squares (OLS) regression was employed to test the linear association between corneal hysteresis (CH) or corneal resistance factor (CRF), separately, and SER while controlling for age, sex, corneal radius and intraocular pressure. Quantile regression (QR) was used to test the same set of associations across 49 equally spaced conditional quantiles of SER. RESULTS: In OLS regression, each standard deviation (SD) decrease in CH and CRF was associated with 0.08 D (95% CI: 0.04-0.12; p < 0.001) and 0.10 D (95% CI: 0.04-0.15; p < 0.001) higher myopia, respectively. However, residual analysis indicated that the linearity assumption was violated. QR revealed no evidence of a significant association between CH/CRF and SER in low myopia, but a significant (p < 0.05) positive association became evident from -2.78 D (0.06 and 0.08 D higher myopia per SD decrease in CH and CRF). The magnitude of association increased exponentially with increasing myopia: in the -5.03 D quantile, every SD decrease in CH and CRF was associated with 0.17 D (95% CI: 0.08-0.25; p < 0.001) and 0.21 D (95% CI: 0.10-0.31; p < 0.001) higher myopia. In the -8.63 D quantile, this further increased to 0.54 D (95% CI: 0.33-0.76; p < 0.001) and 0.67 D (95% CI: 0.41-0.93; p < 0.001) higher myopia per SD decrease in CH and CRF. CONCLUSIONS: Corneal biomechanics appeared compromised from around -3.00 D. These changes were observed to be exponential with increasing myopia.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38563652

RESUMO

PURPOSE: To synthesise evidence across studies on factors associated with pathologic myopia (PM) onset and progression based on the META-analysis for Pathologic Myopia (META-PM) classification framework. METHODS: Findings from six longitudinal studies (5-18 years) were narratively synthesised and meta-analysed, using odds ratio (OR) as the common measure of association. All studies adjusted for baseline myopia, age and sex at a minimum. The quality of evidence was rated using the Grades of Recommendation, Assessment, Development and Evaluation framework. RESULTS: Five out of six studies were conducted in Asia. There was inconclusive evidence of an independent effect (or lack thereof) of ethnicity and sex on PM onset/progression. The odds of PM onset increased with greater axial length (pooled OR: 2.03; 95% CI: 1.71-2.40; p < 0.001), older age (pooled OR: 1.07; 1.05-1.09; p < 0.001) and more negative spherical equivalent refraction, SER (OR: 0.77; 0.68-0.87; p < 0.001), all of which were supported by an acceptable level of evidence. Fundus tessellation was found to independently increase the odds of PM onset in a population-based study (OR: 3.02; 2.58-3.53; p < 0.001), although this was only supported by weak evidence. There was acceptable evidence that greater axial length (pooled OR: 1.23; 1.09-1.39; p < 0.001), more negative SER (pooled OR: 0.87; 0.83-0.92; p < 0.001) and higher education level (pooled OR: 3.17; 1.36-7.35; p < 0.01) increased the odds of PM progression. Other baseline factors found to be associated with PM progression but currently supported by weak evidence included age (pooled OR: 1.01), severity of myopic maculopathy (OR: 3.61), intraocular pressure (OR: 1.62) and hypertension (OR: 0.21). CONCLUSIONS: Most PM risk/prognostic factors are not supported by an adequate evidence base at present (an indication that PM remains understudied). Current factors for which an acceptable level of evidence exists (limited in number) are unmodifiable in adults and lack personalised information. More longitudinal studies focusing on uncovering modifiable factors and imaging biomarkers are warranted.

3.
Transl Vis Sci Technol ; 13(4): 19, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607632

RESUMO

Purpose: To investigate whether fractal dimension (FD), a retinal trait relating to vascular complexity and a potential "oculomics" biomarker for systemic disease, is applicable to a mixed-age, primary-care population. Methods: We used cross-sectional data (96 individuals; 183 eyes; ages 18-81 years) from a university-based optometry clinic in Glasgow, Scotland, to study the association between FD and systemic health. We computed FD from color fundus images using Deep Approximation of Retinal Traits (DART), an artificial intelligence-based method designed to be more robust to poor image quality. Results: Despite DART being designed to be more robust, a significant association (P < 0.001) between image quality and FD remained. Consistent with previous literature, age was associated with lower FD (P < 0.001 univariate and when adjusting for image quality). However, FD variance was higher in older patients, and some patients over 60 had FD comparable to those of patients in their 20s. Prevalent systemic conditions were significantly (P = 0.037) associated with lower FD when adjusting for image quality and age. Conclusions: Our work suggests that FD as a biomarker for systemic health extends to mixed-age, primary-care populations. FD decreases with age but might not substantially decrease in everyone. This should be further investigated using longitudinal data. Finally, image quality was associated with FD, but it is unclear whether this finding is measurement error caused by image quality or confounded by age and health. Future work should investigate this to clarify whether adjusting for image quality is appropriate. Translational Relevance: FD could potentially be used in regular screening settings, but questions around image quality remain.


Assuntos
Inteligência Artificial , Fractais , Humanos , Idoso , Estudos Transversais , Retina , Biomarcadores
4.
Br J Ophthalmol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485215

RESUMO

BACKGROUND: Artificial intelligence (AI) in medical imaging diagnostics has huge potential, but human judgement is still indispensable. We propose an AI-aided teaching method that leverages generative AI to train students on many images while preserving patient privacy. METHODS: A web-based course was designed using 600 synthetic ultra-widefield (UWF) retinal images to teach students to detect disease in these images. The images were generated by stable diffusion, a large generative foundation model, which we fine-tuned with 6285 real UWF images from six categories: five retinal diseases (age-related macular degeneration, glaucoma, diabetic retinopathy, retinal detachment and retinal vein occlusion) and normal. 161 trainee orthoptists took the course. They were evaluated with two tests: one consisting of UWF images and another of standard field (SF) images, which the students had not encountered in the course. Both tests contained 120 real patient images, 20 per category. The students took both tests once before and after training, with a cool-off period in between. RESULTS: On average, students completed the course in 53 min, significantly improving their diagnostic accuracy. For UWF images, student accuracy increased from 43.6% to 74.1% (p<0.0001 by paired t-test), nearly matching the previously published state-of-the-art AI model's accuracy of 73.3%. For SF images, student accuracy rose from 42.7% to 68.7% (p<0.0001), surpassing the state-of-the-art AI model's 40%. CONCLUSION: Synthetic images can be used effectively in medical education. We also found that humans are more robust to novel situations than AI models, thus showcasing human judgement's essential role in medical diagnosis.

5.
BMC Med Res Methodol ; 24(1): 13, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233744

RESUMO

BACKGROUND: Community optometrists in Scotland have performed regular free-at-point-of-care eye examinations for all, for over 15 years. Eye examinations include retinal imaging but image storage is fragmented and they are not used for research. The Scottish Collaborative Optometry-Ophthalmology Network e-research project aimed to collect these images and create a repository linked to routinely collected healthcare data, supporting the development of pre-symptomatic diagnostic tools. METHODS: As the image record was usually separate from the patient record and contained minimal patient information, we developed an efficient matching algorithm using a combination of deterministic and probabilistic steps which minimised the risk of false positives, to facilitate national health record linkage. We visited two practices and assessed the data contained in their image device and Practice Management Systems. Practice activities were explored to understand the context of data collection processes. Iteratively, we tested a series of matching rules which captured a high proportion of true positive records compared to manual matches. The approach was validated by testing manual matching against automated steps in three further practices. RESULTS: A sequence of deterministic rules successfully matched 95% of records in the three test practices compared to manual matching. Adding two probabilistic rules to the algorithm successfully matched 99% of records. CONCLUSIONS: The potential value of community-acquired retinal images can be harnessed only if they are linked to centrally-held healthcare care data. Despite the lack of interoperability between systems within optometry practices and inconsistent use of unique identifiers, data linkage is possible using robust, almost entirely automated processes.


Assuntos
Registro Médico Coordenado , Prontuários Médicos , Humanos , Sistemas Computadorizados de Registros Médicos , Coleta de Dados , Escócia
6.
J R Soc Interface ; 21(210): 20230603, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228184

RESUMO

Methodologies for culturing muscle tissue are currently lacking in terms of quality and quantity of mature cells produced. We analyse images from in vitro experiments to quantify the effects of culture media composition on mouse-derived myoblast behaviour and myotube quality. Metrics of early indicators of cell quality were defined. Images of muscle cell differentiation reveal that altering culture media significantly affects quality indicators and myoblast migratory behaviours. To study the effects of early-stage cell behaviours on mature cell quality, metrics drawn from experimental images or inferred by approximate Bayesian computation (ABC) were applied as inputs to an agent-based model (ABM) of skeletal muscle cell differentiation with quality indicator metrics as outputs. Computational modelling was used to inform further in vitro experiments to predict the optimum media composition for culturing muscle cells. Our results suggest that myonuclei production in myotubes is inversely related to early-stage nuclei fusion index and that myonuclei density and spatial distribution are correlated with residence time of fusing myoblasts, the age at which myotube-myotube fusion ends and the repulsion force between myonuclei. Culture media with 5% serum was found to produce the optimum cell quality and to make muscle cells cultured in a neuron differentiation medium viable.


Assuntos
Fibras Musculares Esqueléticas , Mioblastos , Camundongos , Animais , Teorema de Bayes , Fibras Musculares Esqueléticas/fisiologia , Diferenciação Celular , Meios de Cultura/farmacologia , Músculo Esquelético/fisiologia , Células Cultivadas
7.
Eye (Lond) ; 38(6): 1208-1214, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081936

RESUMO

OBJECTIVES: To investigate the association between intraocular pressure (IOP) and axial elongation rate in highly myopic children from the ZOC-BHVI High Myopia Cohort Study. METHODS: 162 eyes of 81 healthy children (baseline spherical equivalent: -6.25 D to -15.50 D) aged 7-12 years with non-pathological high myopia were studied over five biennial visits. The mean (SD) follow-up duration was 5.2 (3.3) years. A linear mixed-effects model (LMM) was used to assess the association between IOP (at time point t-1) and axial elongation rate (annual rate of change in AL from t-1 to t), controlling for a pre-defined set of covariates including sex, age, central corneal thickness, anterior chamber depth and lens thickness (at t-1). LMM was also used to assess the contemporaneous association between IOP and axial length (AL) at t, controlling for the same set of covariates (at t) as before. RESULTS: Higher IOP was associated with slower axial growth (ß = -0.01, 95% CI -0.02 to -0.005, p = 0.001). There was a positive contemporaneous association between IOP and AL (ß = 0.03, 95% CI 0.01-0.05, p = 0.004), but this association became progressively less positive with increasing age, as indicated by a negative interaction effect between IOP and age on AL (ß = -0.01, 95% CI -0.01 to -0.003, p = 0.001). CONCLUSIONS: Higher IOP is associated with slower rather than faster axial growth in children with non-pathological high myopia, an association plausibly confounded by the increased influence of ocular compliance on IOP.


Assuntos
Glaucoma , Miopia , Criança , Humanos , Pressão Intraocular , Estudos de Coortes , Olho/patologia , Glaucoma/patologia , Refração Ocular , Comprimento Axial do Olho/patologia
8.
Transl Vis Sci Technol ; 12(11): 27, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988073

RESUMO

Purpose: To develop an open-source, fully automatic deep learning algorithm, DeepGPET, for choroid region segmentation in optical coherence tomography (OCT) data. Methods: We used a dataset of 715 OCT B-scans (82 subjects, 115 eyes) from three clinical studies related to systemic disease. Ground-truth segmentations were generated using a clinically validated, semiautomatic choroid segmentation method, Gaussian Process Edge Tracing (GPET). We finetuned a U-Net with the MobileNetV3 backbone pretrained on ImageNet. Standard segmentation agreement metrics, as well as derived measures of choroidal thickness and area, were used to evaluate DeepGPET, alongside qualitative evaluation from a clinical ophthalmologist. Results: DeepGPET achieved excellent agreement with GPET on data from three clinical studies (AUC = 0.9994, Dice = 0.9664; Pearson correlation = 0.8908 for choroidal thickness and 0.9082 for choroidal area), while reducing the mean processing time per image on a standard laptop CPU from 34.49 ± 15.09 seconds using GPET to 1.25 ± 0.10 seconds using DeepGPET. Both methods performed similarly according to a clinical ophthalmologist who qualitatively judged a subset of segmentations by GPET and DeepGPET, based on smoothness and accuracy of segmentations. Conclusions: DeepGPET, a fully automatic, open-source algorithm for choroidal segmentation, will enable researchers to efficiently extract choroidal measurements, even for large datasets. As no manual interventions are required, DeepGPET is less subjective than semiautomatic methods and could be deployed in clinical practice without requiring a trained operator. Translational Relevance: DeepGPET addresses the lack of open-source, fully automatic, and clinically relevant choroid segmentation algorithms, and its subsequent public release will facilitate future choroidal research in both ophthalmology and wider systemic health.


Assuntos
Aprendizado Profundo , Oftalmologistas , Humanos , Tomografia de Coerência Óptica , Corioide/diagnóstico por imagem , Algoritmos
9.
Stud Health Technol Inform ; 309: 240-241, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37869850

RESUMO

BACKGROUND: Artificial Intelligence (AI) based clinical decision support systems to aid diagnosis are increasingly being developed and implemented but with limited understanding of how such systems integrate with existing clinical work and organizational practices. We explored the early experiences of stakeholders using an AI-based e-learning imaging software tool Veye Lung Nodules (VLN) aiding the detection, classification, and measurement of pulmonary nodules in computed tomography scans of the chest. We performed semi-structured interviews and observations across early adopter deployment sites with clinicians, strategic decision-makers, suppliers, patients with long-term chest conditions, and academics with expertise in the use of diagnostic AI in radiology settings. We coded the data using the Technology, People, Organizations and Macro-environmental factors framework (TPOM). We conducted 39 interviews. Clinicians reported VLN to be easy to use with little disruption to the workflow. There were differences in patterns of use between experts and novice users with experts critically evaluating system recommendations and actively compensating for system limitations to achieve more reliable performance. Patients also viewed the tool positively. There were contextual variations in tool performance and use between different hospital sites and different use cases. Implementation challenges included integration with existing information systems, data protection, and perceived issues surrounding wider and sustained adoption, including procurement costs. Tool performance was variable, affected by integration into workflows and divisions of labor and knowledge, as well as technical configuration and infrastructure. These under-researched factors require attention and further research.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Software , Tomografia Computadorizada por Raios X
10.
J Am Med Inform Assoc ; 31(1): 24-34, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37748456

RESUMO

OBJECTIVES: Artificial intelligence (AI)-based clinical decision support systems to aid diagnosis are increasingly being developed and implemented but with limited understanding of how such systems integrate with existing clinical work and organizational practices. We explored the early experiences of stakeholders using an AI-based imaging software tool Veye Lung Nodules (VLN) aiding the detection, classification, and measurement of pulmonary nodules in computed tomography scans of the chest. MATERIALS AND METHODS: We performed semistructured interviews and observations across early adopter deployment sites with clinicians, strategic decision-makers, suppliers, patients with long-term chest conditions, and academics with expertise in the use of diagnostic AI in radiology settings. We coded the data using the Technology, People, Organizations, and Macroenvironmental factors framework. RESULTS: We conducted 39 interviews. Clinicians reported VLN to be easy to use with little disruption to the workflow. There were differences in patterns of use between experts and novice users with experts critically evaluating system recommendations and actively compensating for system limitations to achieve more reliable performance. Patients also viewed the tool positively. There were contextual variations in tool performance and use between different hospital sites and different use cases. Implementation challenges included integration with existing information systems, data protection, and perceived issues surrounding wider and sustained adoption, including procurement costs. DISCUSSION: Tool performance was variable, affected by integration into workflows and divisions of labor and knowledge, as well as technical configuration and infrastructure. CONCLUSION: The socio-organizational factors affecting performance of diagnostic AI are under-researched and require attention and further research.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Software , Tomografia Computadorizada por Raios X
11.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37550008

RESUMO

The composition of fiber types within skeletal muscle impacts the tissue's physiological characteristics and susceptibility to disease and ageing. In vitro systems should therefore account for fiber-type composition when modelling muscle conditions. To induce fiber specification in vitro, we designed a quantitative contractility assay based on optogenetics and particle image velocimetry. We submitted cultured myotubes to long-term intermittent light-stimulation patterns and characterized their structural and functional adaptations. After several days of in vitro exercise, myotubes contract faster and are more resistant to fatigue. The enhanced contractile functionality was accompanied by advanced maturation such as increased width and up-regulation of neuron receptor genes. We observed an up-regulation in the expression of fast myosin heavy-chain isoforms, which induced a shift towards a fast-twitch phenotype. This long-term in vitro exercise strategy can be used to study fiber specification and refine muscle disease modelling.


Assuntos
Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Fibras Musculares de Contração Rápida/química , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/química , Fibras Musculares de Contração Lenta/metabolismo , Optogenética , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo
12.
PLoS Comput Biol ; 19(8): e1011130, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535698

RESUMO

Over the past 40 years, there has been a strong focus on the development of mathematical models of angiogenesis, while developmental remodelling has received little such attention from the mathematical community. Sprouting angiogenesis can be seen as a very crude way of laying out a primitive vessel network (the raw material), while remodelling (understood as pruning of redundant vessels, diameter control, and the establishment of vessel identity and hierarchy) is the key to turning that primitive network into a functional network. This multiscale problem is of prime importance in the development of a functional vasculature. In addition, defective remodelling (either during developmental remodelling or due to a reactivation of the remodelling programme caused by an injury) is associated with a significant number of diseases. In this review, we discuss existing mathematical models of developmental remodelling and explore the important contributions that these models have made to the field of vascular development. These mathematical models are effectively used to investigate and predict vascular development and are able to reproduce experimentally observable results. Moreover, these models provide a useful means of hypothesis generation and can explain the underlying mechanisms driving the observed structural and functional network development. However, developmental vascular remodelling is still a relatively new area in mathematical biology, and many biological questions remain unanswered. In this review, we present the existing modelling paradigms and define the key challenges for the field.


Assuntos
Modelos Biológicos , Remodelação Vascular , Humanos
13.
Nat Med ; 29(5): 1201-1210, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37169863

RESUMO

Although guidelines recommend fixed cardiac troponin thresholds for the diagnosis of myocardial infarction, troponin concentrations are influenced by age, sex, comorbidities and time from symptom onset. To improve diagnosis, we developed machine learning models that integrate cardiac troponin concentrations at presentation or on serial testing with clinical features and compute the Collaboration for the Diagnosis and Evaluation of Acute Coronary Syndrome (CoDE-ACS) score (0-100) that corresponds to an individual's probability of myocardial infarction. The models were trained on data from 10,038 patients (48% women), and their performance was externally validated using data from 10,286 patients (35% women) from seven cohorts. CoDE-ACS had excellent discrimination for myocardial infarction (area under curve, 0.953; 95% confidence interval, 0.947-0.958), performed well across subgroups and identified more patients at presentation as low probability of having myocardial infarction than fixed cardiac troponin thresholds (61 versus 27%) with a similar negative predictive value and fewer as high probability of having myocardial infarction (10 versus 16%) with a greater positive predictive value. Patients identified as having a low probability of myocardial infarction had a lower rate of cardiac death than those with intermediate or high probability 30 days (0.1 versus 0.5 and 1.8%) and 1 year (0.3 versus 2.8 and 4.2%; P < 0.001 for both) from patient presentation. CoDE-ACS used as a clinical decision support system has the potential to reduce hospital admissions and have major benefits for patients and health care providers.


Assuntos
Síndrome Coronariana Aguda , Infarto do Miocárdio , Humanos , Feminino , Masculino , Biomarcadores , Troponina I , Infarto do Miocárdio/diagnóstico , Síndrome Coronariana Aguda/diagnóstico , Aprendizado de Máquina
14.
Commun Biol ; 6(1): 523, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188768

RESUMO

There is increasing evidence that the complexity of the retinal vasculature measured as fractal dimension, Df, might offer earlier insights into the progression of coronary artery disease (CAD) before traditional biomarkers can be detected. This association could be partly explained by a common genetic basis; however, the genetic component of Df is poorly understood. We present a genome-wide association study (GWAS) of 38,000 individuals with white British ancestry from the UK Biobank aimed to comprehensively study the genetic component of Df and analyse its relationship with CAD. We replicated 5 Df loci and found 4 additional loci with suggestive significance (P < 1e-05) to contribute to Df variation, which previously were reported in retinal tortuosity and complexity, hypertension, and CAD studies. Significant negative genetic correlation estimates support the inverse relationship between Df and CAD, and between Df and myocardial infarction (MI), one of CAD's fatal outcomes. Fine-mapping of Df loci revealed Notch signalling regulatory variants supporting a shared mechanism with MI outcomes. We developed a predictive model for MI incident cases, recorded over a 10-year period following clinical and ophthalmic evaluation, combining clinical information, Df, and a CAD polygenic risk score. Internal cross-validation demonstrated a considerable improvement in the area under the curve (AUC) of our predictive model (AUC = 0.770 ± 0.001) when comparing with an established risk model, SCORE, (AUC = 0.741 ± 0.002) and extensions thereof leveraging the PRS (AUC = 0.728 ± 0.001). This evidences that Df provides risk information beyond demographic, lifestyle, and genetic risk factors. Our findings shed new light on the genetic basis of Df, unveiling a common control with MI, and highlighting the benefits of its application in individualised MI risk prediction.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Infarto do Miocárdio/genética , Doença da Artéria Coronariana/genética , Fatores de Risco
15.
Biophys J ; 122(8): 1526-1537, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36932676

RESUMO

The distribution of red blood cells (RBCs) in the microcirculation determines the oxygen delivery and solute transport to tissues. This process relies on the partitioning of RBCs at successive bifurcations throughout the microvascular network, and it has been known since the last century that RBCs partition disproportionately to the fractional blood flow rate, therefore leading to heterogeneity of the hematocrit (i.e., volume fraction of RBCs in blood) in microvessels. Usually, downstream of a microvascular bifurcation, the vessel branch with a higher fraction of blood flow receives an even higher fraction of RBC flux. However, both temporal and time-average deviations from this phase-separation law have been observed in recent studies. Here, we quantify how the microscopic behavior of RBC lingering (i.e., RBCs temporarily residing near the bifurcation apex with diminished velocity) influences their partitioning, through combined in vivo experiments and in silico simulations. We developed an approach to quantify the cell lingering at highly confined capillary-level bifurcations and demonstrate that it correlates with deviations of the phase-separation process from established empirical predictions by Pries et al. Furthermore, we shed light on how the bifurcation geometry and cell membrane rigidity can affect the lingering behavior of RBCs; e.g., rigid cells tend to linger less than softer ones. Taken together, RBC lingering is an important mechanism that should be considered when studying how abnormal RBC rigidity in diseases such as malaria and sickle-cell disease could hinder the microcirculatory blood flow or how the vascular networks are altered under pathological conditions (e.g., thrombosis, tumors, aneurysm).


Assuntos
Eritrócitos , Modelos Cardiovasculares , Hematócrito , Microcirculação/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
17.
Interface Focus ; 12(6): 20220037, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36325194

RESUMO

The dynamics of blood flow in the smallest vessels and passages of the human body, where the cellular character of blood becomes prominent, plays a dominant role in the transport and exchange of solutes. Recent studies have revealed that the microhaemodynamics of a vascular network is underpinned by its interconnected structure, and certain structural alterations such as capillary dilation and blockage can substantially change blood flow patterns. However, for extravascular media with disordered microstructure (e.g. the porous intervillous space in the placenta), it remains unclear how the medium's structure affects the haemodynamics. Here, we simulate cellular blood flow in simple models of canonical porous media representative of extravascular biological tissue, with corroborative microfluidic experiments performed for validation purposes. For the media considered here, we observe three main effects: first, the relative apparent viscosity of blood increases with the structural disorder of the medium; second, the presence of red blood cells (RBCs) dynamically alters the flow distribution in the medium; third, symmetry breaking introduced by moderate structural disorder can promote more homogeneous distribution of RBCs. Our findings contribute to a better understanding of the cell-scale haemodynamics that mediates the relationship linking the function of certain biological tissues to their microstructure.

18.
Interface Focus ; 12(6): 20220057, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36325195

RESUMO

[This corrects the article DOI: 10.1098/rsfs.2022.0020.][This corrects the article DOI: 10.1098/rsfs.2022.0020.].

19.
Dev Cell ; 57(19): 2321-2333.e9, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220082

RESUMO

Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.


Assuntos
Polaridade Celular , Células Endoteliais , Junções Aderentes/metabolismo , Animais , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Células Endoteliais/metabolismo , Camundongos , Morfogênese , Retina/metabolismo
20.
Interface Focus ; 12(5): 20220020, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-35996738

RESUMO

Muscle-on-chip devices aim to recapitulate the physiological characteristics of in vivo muscle tissue and so maintaining levels of oxygen transported to cells is essential for cell survival and for providing the normoxic conditions experienced in vivo. We use finite-element method numerical modelling to describe oxygen transport and reaction in a proposed three-dimensional muscle-on-chip bioreactor with embedded channels for muscle cells and growth medium. We determine the feasibility of ensuring adequate oxygen for muscle cell survival in a device sealed from external oxygen sources and perfused via medium channels. We investigate the effects of varying elements of the bioreactor design on oxygen transport to optimize muscle tissue yield and maintain normoxic conditions. Successful co-culturing of muscle cells with motor neurons can boost muscle tissue function and so we estimate the maximum density of seeded neurons supported by oxygen concentrations within the bioreactor. We show that an enclosed bioreactor can provide sufficient oxygen for muscle cell survival and growth. We define a more efficient arrangement of muscle and perfusion chambers that can sustain a predicted 50% increase in maximum muscle volume per perfusion vessel. A study of simulated bioreactors provides functions for predicting bioreactor designs with normoxic conditions for any size of perfusion vessel, muscle chamber and distance between chambers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA